Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 2 of 2 results
1.

Optogenetic Manipulation of Cell Migration with High Spatiotemporal Resolution Using Lattice Lightsheet Microscopy.

blue CRY2/CIB1 CRY2olig U-2 OS Control of cytoskeleton / cell motility / cell shape
bioRxiv, 2 Jan 2022 DOI: 10.1101/2022.01.02.474058 Link to full text
Abstract: Lattice lightsheet microscopy (LLSM) is modified with the aim of manipulating cellular behavior with subcellular resolution through three-dimensional (3D) optogenetic activation. In this study, we report a straightforward implementation of the activation source in LLSM in which the stimulating light can be generated by changing the spatial light modulator (SLM) patterns and the annual masks. As a result, a Bessel beam as a stimulation source is integrated into the LLSM without changing the optical configuration, achieving high spatiotemporal activation. We show that the energy power required for optogenetic reactions is lower than 1 nW (24 mW/cm2) and membrane ruffling can be activated at different locations within a cell with subcellular resolution. We also demonstrate guided cell migration using optogenetic stimulation for up to 6 h with 463 volume imaging without noticeable damage to cells.
2.

Adherens junction-associated pores mediate the intercellular transport of endosomes and cytoplasmic proteins.

blue TULIP D. melanogaster in vivo Control of vesicular transport
Biochem Biophys Res Commun, 2 Oct 2018 DOI: 10.1016/j.bbrc.2018.09.129 Link to full text
Abstract: Intercellular endosomes (IEs) are endocytosed vesicles shuttled through the adherens junctions (AJs) between two neighboring epidermal cells during Drosophila dorsal closure. The cell-to-cell transport of IEs requires DE-cadherin (DE-cad), microtubules (MTs) and kinesin. However, the mechanisms by which IEs can be transported through the AJs are unknown. Here, we demonstrate the presence of AJ-associated pores with MTs traversing through the pores. Live imaging allows direct visualization of IEs being transported through the AJ-associated pores. By using an optogenetic dimerization system, we observe that the dimerized IE-kinesin complexes move across AJs into the neighboring cell. The AJ-associated pores also allow intercellular movement of soluble proteins. Importantly, most epidermal cells form dorsoventral-oriented two-cell syncytia. Together, we present a model in which an AJ-associated pore mediates the intercellular transport of IEs and proteins between two cells in direct contact.
Submit a new publication to our database